
Zombie Awakening: Stealthy Hijacking of Active Domains
through DNS Hosting Referral

Eihal Alowaisheq
Indiana University

King Saud University
ealowais@indiana.edu

Siyuan Tang
Indiana University
tangsi@indiana.edu

Zhihao Wang
Institute of Information Engineering,

Chinese Academy of Sciences
wangzhihao@iie.ac.cn

Fatemah Alharbi
Taibah University

fmhharbi@taibahu.edu.sa

Xiaojing Liao
Indiana University
xliao@indiana.edu

XiaoFeng Wang
Indiana University
xw7@indiana.edu

ABSTRACT
In recent years, the security implication of stale NS records, which
point to a nameserver that no longer resolves the domain, has
been unveiled. Prior research studied the stale DNS records that
point to expired domains. The popularity of DNS hosting services
brings in a new category of stale NS records, which reside in the
domain’s zone (instead of the TLD zone) for an active domain.
To the best of our knowledge, the security risk of this kind of
stale NS record has never been studied before. In our research,
we show that this new type of stale NS record can be practically
exploited, causing a stealthier hijack of domains associated with
the DNS hosting service. We also performed a large-scale analysis
on over 1M high-profile domains, 17 DNS hosting providers and
12 popular public resolver operators to confirm the prevalence of
this security risk. Our research further discovers 628 hijackable
domains (e.g., 6 government entities and 2 payment services), 14
affected DNS hosting providers (e.g., Amazon Route 53), and 10
vulnerable public resolver operators (e.g., CloudFlare). Furthermore,
we conducted an in-depth measurement analysis on them, thus
providing a better understanding of this new security risk. Also, we
explore the mitigation techniques that can be adopted by different
affected parties.

CCS CONCEPTS
• Security and privacy → Authentication; Security protocols;
Vulnerability management.

KEYWORDS
Domain hijacking; DNS cash poisoning; DNS hosting services
ACM Reference Format:
Eihal Alowaisheq, Siyuan Tang, Zhihao Wang, Fatemah Alharbi, Xiaojing
Liao, and XiaoFeng Wang. 2020. Zombie Awakening: Stealthy Hijacking of
Active Domains through DNS Hosting Referral. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security (CCS

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3417864

’20), November 9–13, 2020, Virtual Event, USA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3372297.3417864

1 INTRODUCTION
The Domain Name System (DNS) has been the cornerstone of the
Internet and its immense scalability. It provides the vital distributed
directory service which associates information with the domain
names given to various online entities and translates between do-
mains and their Internet Protocol (IP) addresses. For this purpose,
the DNS operates through a complicated hierarchical infrastructure
to delegate the management of the domains within a portion of
the namespace (called DNS zone) and their mapping of Internet
resources to a set of authoritative nameservers. Through this infras-
tructure, a client-side resolver can recursively discover and query
the nameservers in charge of different zones, from the root to the
Top Level Domain (TLD, e.g., .com), to the Second Level Domain
(SLD, e.g., example.com), and so on, until an authoritative answer
(e.g., an IP address) is provided by a server. Such an infrastruc-
ture is security-critical. If misconfigured, it could inflict damage
of devastating impact, ranging from denial of access to Internet
resources [9, 23, 24, 37, 43, 61, 65] to hijacking of domains from
their legitimate owners [52, 75]. Despite the long-standing effort
from the security community to safeguard this infrastructure, its
complexity and distributed nature continue to expose it to emerging
security threats.
Menaces of stale NS records in the SLD zone. In recent years,
researchers have identified the security implications of stale NS
records, where the nameserver that the record points to no longer
resolves the domain. For instance, prior research [52] looks into
dangling NS (Dare-NS) records, where the nameserver domains that
NS records point to are expired and the adversary could purchase
the domain to hijack this resource. Another example of domain
hijacking through stale NS records emerges with the popularity of
DNS hosting services (e.g., Amazon Route 53 [6] and GoDaddy DNS
hosting [36]). At these services, users host their DNS records in the
service provider’s nameservers. Once these records become stale, an
adversary can claim the nameserver domain and direct the traffic.
Some blog posts discussed the exploitation of this vulnerability
[12, 13]. However, the proposed attack works effectively if stale NS
records are in the TLD zone. Once a domain is hijacked, it could be
easily noticed by the domain owner because such misconfiguration
appears in the normal resolution path.

https://doi.org/10.1145/3372297.3417864
https://doi.org/10.1145/3372297.3417864

In our research, we found that the popularity of DNS hosting
services brings in a new category of stale NS records – stale NS
records in the SLD zone: unlike Dare-NS, the nameserver pointed
to by the record still exists. Also, those stale NS records are in the
SLD zone instead of TLD zone, which makes the misconfiguration
difficult to discover. Specifically, the attacker can exploit this vul-
nerability to hijack a domain through a “hidden” resolution path.
For example, stale NS records in the SLD zone exist when importing
the domain’s zone information from one DNS hosting provider into
a new DNS server, where the nameserver provided by the hosting
provider no longer resolves the domain. After that, during the do-
main resolution, the stale NS record at the SLD zone will not be
normally used unless cached, since the nameserver received from
the TLD will directly return the A record to find out the domain’s
IP address, as long as the NS records in the TLD zone (e.g., .com)
are up-to-date (i.e., only pointing to the current nameserver). Our
research shows that the stale NS records at the SLD can actually be
practically exploited, causing a stealthy hijack of active domains.
Zombie awakening attack. More specifically, we found those
stale NS records can be reactivated within a DNS hosting service
when the adversarymakes an unauthorized claim on another party’s
domain to host the DNS records. It indicates a practical scenario
for the attacker to inject a valid NS response to the resolver and
further hijack the domain. In particular, by strategically querying a
resolver for the domain’s NS records, the adversary will make the
resolver cache NS records that reside at the SLD zone as the valid
NS response. So a follow-up query for the IP address of the same
domain could trigger the stale NS record, which opens the attack
avenue by poisoning the resolver with the adversary’s A record con-
figured at the DNS hosting side. Interestingly, even in the presence
of inconsistency (that is, the absence of the stale record in the TLD
zone), the NS records in the SLD zone will be used due to higher
trust level [32]. We call the threat zombie awakening or Zaw attack,
and the vulnerable stale NS records zombie referrals or Zrefs.

In our research, we found that the Zaw threat is completely real-
istic: we successfully exploited our own domains at various leading
DNS hosting providers and the resolvers maintained by major op-
erators. Also, we demonstrated that this threat is serious, through
a large-scale analysis that discovered 628 vulnerable domains from
Alexa’s top 1M domains, including those of education institutions,
government entities, and companies. For this purpose, we designed
a semi-automated approach, called ZreFinder, to automatically dis-
cover Zrefs. ZreFinder systematically collects the NS records for
each target domain, looks for the inconsistency between the TLD
zone and the SLD zone, and identifies the stale records associated
with DNS hosting providers. For each DNS hosting provider, our
approach further determines if a domain can be claimed without
authorization at the provider to build an illicit resolution path.
Measurement andmitigation. Most importantly, by running Zre-
Finder on Alexa’s top 1M domains and a set of .edu and .gov
domains, we found that this new threat is indeed significant and im-
pactful. More specifically, we discovered 628 vulnerable domains, in-
cluding 6 government domains associated with Colombia, Malaysia,
and Saudi Arabia, and domains for 3 universities. Also flagged are
those belonging to critical public services and big companies, e.g.,
Pittsburgh airport, Croatia airlines, and the FastSpring E-commerce

platform. Also, we found that the Zrefs of such domains have been
out there for a while: 89.97% hijackable domains have Zrefs for at
least 30 days.

Furthermore, our research shows that prominent DNS hosting
services and popular public resolvers are vulnerable to the Zaw
attack. Among them are 14 leading hosting providers such as Ama-
zon Route 53, Hetzner Online GmbH, and more than 7K resolvers,
including those operated by CloudFlare, Quad9, and OpenNIC. Such
resolvers turned out to be easily poisoned: merely 6.5 queries on
average are found to be adequate to contaminate their cache with
malicious A records implanted on the hosting service side. This
enables an adversary to stealthily control the traffic to the target
domain whenever the poisoned resolvers are used, for purposes
such as phishing, malware distribution, etc.

We further discuss how to mitigate this new security risk. Our
ZreFinder can be utilized to find Zrefs so they can be removed by do-
main owners. DNSSEC can also be leveraged to defeat Zaw attacks,
although it has not been extensively deployed. On the side of the
DNS hosting provider, we present a simple verification technique
to ensure that a domain cannot be claimed without authorization
by requesting the domain owner to add a randomly-generated NS
record at the TLD level.
Contributions. The contributions of the paper are outlined as
follows:
•We discovered a new security risk, Zaw attack, in the DNS infras-
tructure. To our knowledge, this Zaw attack has never been shown
practically before in the public, which demonstrates the grave risk
posed by a stale NS record in the SLD zone, particularly with the
emergence of DNS hosting services.
• We developed a new technique for automatic discovery of the
domains with Zrefs. By scanning over 1M high-profile domains, we
identified 628 hijackable domains, affecting government agencies,
public services, large corporations, etc.
• We conducted a large-scale measurement study to understand
Zaw attack, including identifying 14 affected DNS hosting providers
and 10 vulnerable public revolver operators, and investigating the
attack complexity (e.g., the selection rate of Zref) in the real world.
• We provided suggestions for the affected parties to mitigate this
new threat.
Roadmap. The rest of the paper is organized as follows: Section 2
presents the background of the research; Section 3 describes the
Zaw attack; Section 4 elaborates on the technique for finding Zrefs
for a large-scale measurement study; Section 5 provides our mea-
surement findings; Section 6 discusses the potential mitigations;
Section 7 compares our work with prior research and Section 8
concludes the paper.

2 BACKGROUND
In this section, we provide background information about the DNS
structure and its hosting providers, along with the assumptions
made in our research.

2.1 DNS Resolution and Caching
DNS structure and resolution. As mentioned earlier, the Do-
main Name System (DNS) resolves Fully Qualified Domain Names

(FQDNs) to their corresponding IP addresses (and vice versa) through
a hierarchical infrastructure. At the top of the hierarchy is the root
(“.”), under which are a series of Top Level Domains (TLDs, e.g.,
.com, .net, and .org). They are followed by Second Level Domains
(SLDs, e.g., example.com), which their owners register with regis-
trars. More details of this hierarchy can be found in RFCs [57, 58].
Throughout the paper, we refer to SLD as domain. In the DNS hier-
archy, each node includes referral information for its child nodes,
which is essential to the recursive DNS resolution process. In other
words, the root zone contains an NS RR set (called RRSet), with each
RR pointing to a nameserver in charge of its children zone at the
TLD level. Similarly, TLDs have the NS RRSets that point to SLDs.

The DNS resolution is usually done recursively by a DNS resolver.
For example, when a client sends a DNS query to retrieve the IP
address of an FQDN www.example.com, if the cache of the resolver
carries no information about the requested domain, the resolver
first forwards the query to the root server to trigger the recursive
process. The root server then redirects the resolver to the .com
TLD server, which further refers the resolver to the authoritative
nameserver of example.com to get the IP address as a response,
then the resolver sends the response back to the client. To optimize
this process, resolvers can choose to cache any receivedDNS records
for future resolutions.
DNS response. Resolution information is organized into Resource
Records (RRs) with the following format: name, Time-to-Live (TTL),
class, type, and data, as illustrated in Figure 1. The <name, type,
class> serves as the key when searching for a record. Here, name
states the name of the record, type specifies the record type, such
as A, NS, and CNAME, and class defines the protocol, e.g., IN for the
Internet protocol in Figure 1. Also, each record has a TTL (time-to-
live) field that determines the lifespan (in seconds) of the record
when cached by a resolver. Note that resolvers may not adhere to
the TTL and may, instead, set its minimum and maximum limit for
a record [42].

A DNS response includes a series of RRs in three main sections:
answer, authority, and additional. Figure 1 shows a snippet of a
DNS response to an A record query for example.com. The answer
section contains the RR that answers the query, i.e., the domain’s
IP address. The authority section holds a set of the authoritative
nameservers for the domain. The additional section carries other
RRs related to the query, the IPs of these authoritative nameservers
in the example. It is common for a domain to have more than one
authoritative nameservers. For example, in Figure 1, the domain
example.com has two nameservers ([a,b].iana-servers.net).
During the resolution process, the resolver usually randomly picks
one to balance the workload over the nameservers, or chooses the
one statistically based on shorter Round-Trip Time (RTT) [80].
DNS caching. Resolvers often cache resolution results to improve
performance. For each query, the resolver first checks its cache and
directly replies to the client if the corresponding RR is found (a cache
hit). A security risk of the caching is DNS poisoning [5, 44, 45, 72]:
the attacker may inject a malicious DNS response to the cache to
direct victims to a server under his control. For this purpose, the
attacker needs to win the race against a legitimate response from
the domain’s nameservers. The attack becomes increasingly hard
due to the protection in place for today’s resolvers.

;; ANSWER SECTION:
example.com. 46294 IN A 93.184.216.34

;; AUTHORITY SECTION:
example.com. 43020 IN NS a.iana -servers.net.
example.com. 43020 IN NS b.iana -servers.net.

;; ADDITIONAL SECTION:
a.iana -servers.net. 118512 IN A 199.43.135.53
b.iana -servers.net. 35275 IN A 199.43.133.53

Figure 1: The structure of the DNS response to an A record
query for example.com showing the three main sections.

More specifically, such protection falls into three categories:
(1) challenge-response (e.g., Source Port Randomization [22]) ; (2)
cryptographic defense (e.g., DNSSEC [77]); and (3) caching rules,
including Bailiwick rule [72], and Credibility rule [32]. The bailiwick
rule protects the cache by ignoring out-of-bailiwick records in
the authoritative or additional sections of a DNS response. For
example, if a response to .com returned a mapping of .org in the
additional or authority sections, this record will not be cached. The
credibility rule determines when to overwrite existing records in
the cache. Each DNS record is assigned a trust level, or ranking. The
resolver overwrites an existing record if it receives a new one with
a higher/equal trust level. The trust level is based on two criteria: (1)
whether the response is received from an authoritative nameserver
or not; and (2) in which section of the response the record is placed.
For instance, a DNS response, which is an authoritative answer
in the authority section from an authoritative nameserver (e.g.,
iana-servers.net), will have a higher trust level than a response
from non-authoritative nameservers (e.g., .net zone file).

Some new attacks can be used to circumvent the protection.
However, they are all based upon strong assumptions and have
difficulty succeeding in practice. For example, prior research [46]
shows that an attacker can abuse caching rules to place a poisonous
record in a resolver’s cache, requiring the attacker to craft a DNS
response to bypass the challenge-response protection. As another
example, the study [42] found that the attacker can revive a revoked
domain by extending its TTL value, when the domain’s nameserver
is assumed to be under his control, without providing a practical
scenario in which the assumption is possible. By comparison, we do
notmake these assumptions in our research, and our attackworks in
practice whenever a Zref is found (Section 4). Also, the deployment
of DNSSEC [77] may mitigate the risk due to the authorization
between parent/child zones. However, the protection still has not
been widely used [16, 73, 74, 79].
2.2 DNS Hosting
Operations of DNS hosting services. A DNS hosting provider is
a service that provides authoritative nameservers to help its cus-
tomers manage the DNS records of their domains. To use such a
service, one first creates an account with the provider and adds
a domain under her account. Then, the provider assigns a set of
nameservers to manage the domain and respond to its DNS queries.
This is achieved in various ways across different hosting services.
For instance, DigitalOcean [26] offers a fixed set of nameservers
(i.e., ns[1,2,3].digitalocean.com) to all of its customers, while
CloudFlare [18] and GoDaddy DNS hosting [36] randomly select
two ormore nameservers (e.g., [hank, val].ns.cloudflare.com;
[ns51,52].domaincontrol.com) from their nameserver pools for

ns.example.com

.com nameserver

example.com NS ns.example.com

example.com NS ns.example.com
example.com A IPcorrect
example.com NS ns.provider.com

ns.provider.com

example.com NS ns.provider.com
example.com A IPcorrect

example.com NS ns.example.com
example.com A IPcorrect

Resolver

2 3

5
67

8 1

4

(a) DNS configuration and resolution for a vulnerable domain

ns.example.com

.com nameserver

example.com NS ns.example.com

ns.provider.com

example.com NS ns.provider.com
example.com A IPattacker

example.com NS ns.example.com
example.com NS ns.provider.com
example.com A IPattacker

Resolver

1

2

3

6

ex
am

pl
e.

co
m

N
S
?

ex
am
pl
e.
co
m

A
? 10

7

example.com NS ns.example.com
example.com A IPcorrect
example.com NS ns.provider.com

4 5

9

11

12

1314

8

(b) DNS configuration and resolution for a hijacked domain

Figure 2: Overview of the threat model. (a) shows the case of vulnerable domain (i.e., example.com). (b) shows the case of the
domain being hijacked (Bold represents the stale NS records. For simplicity, here we ignore queries to the root DNS servers.)

each user. In our study, we observe that all DNS hosting providers
(Table 1) validate the absence of an active zone for a domain in
their services before hosting it, except for the Amazon Route 53 [6],
which allows the same domain to be hosted under different ac-
counts and assigns different nameservers to manage it for these
accounts. Similar protection measures are taken by most providers
to prevent subdomain hijacking.
Security risks. Once a customer stops using the hosting service,
the provider’s nameservers stop responding to the queries for her
domain1 and return the REFUSED status code instead. If the cus-
tomer does not clear up her NS records (in the TLD zone or the
new SLD zone) that point to these deactivated hosting nameservers,
then these records become stale and pose security risks [12, 13].
In particular, we found that most providers do not validate their
customers’ ownership of the domains they claim under their ac-
counts, possibly due to the belief that to have the domains fully
resolved, the NS records have to be properly updated at the TLD
level (i.e., at the registrar) and therefore are under the full control
of authorized parties. Even when the TLD zone contains the stale
RRs, the misconfiguration is conspicuous, since failure in resolving
is likely to happen and be noticed by the domain owner. Our study,
however, shows that it is possible to trigger an unexpected resolu-
tion path through the stale NS record at the SLD zone, even when
the record is not present in the TLD zone. This opens a new and
stealthy avenue to exploit the stale record for hijacking a domain.

3 ZOMBIE AWAKENING ATTACK
Threat model. We present the Zaw attack, assuming the presence
of at least one stale NS record in a target domain’s SLD zone that
points to a DNS hosting service that is not verifying the ownership
of the domain being claimed. This enables an adversary to stealthily

1CloudFlare is an exception and continues to resolve the domain until the referral
records are changed.

hijack a domain with ongoing service, by exploiting both the name-
server at the hosting service and the targeted resolvers, to divert
the traffic the domain receives. Later we show that these assump-
tions are realistic (Sections 4.3 and 5.2): our analysis of over 1M
high-profile domains has brought to light 628 hijackable 2 domains
with Zrefs that enables such a Zaw attack.
Stale NS record at SLD zone. As mentioned earlier, the Zaw at-
tack aims at the stale NS record at the SLD zone. The presence of
such a record is less noticeable since it does not normally affect the
resolution of a domain in the absence of the attack. As an example,
Figure 2a shows a client that attempts to connect to a vulnerable do-
main example.com. In this case, the NS record at both the TLD and
SLD zones points to ns.example.com. A domain typically has mul-
tiple NS records, and ideally, its NS RRSets are identical at the TLD
and the SLD zones. The SLD zone further contains its A record that
points to the IP address set by the domain’s owner. In reality, the
domain’s zone may include a stale NS record pointing at a DNS host-
ing provider ns.provider.com that no longer manages the domain.
The existence of such a record could be caused by the importation of
the SLD zone information from the provider (ns.provider.com) to
the new DNS server (ns.example.com) when moving the domain’s
management out of the provider. Oftentimes, the RRs that do not
affect the normal resolution of the domain are left there without
being cleaned up.

More specifically, when the stale NS record remains in the TLD
zone, it can be used to locate the authoritative nameserver of the
domain (which will fail) and, therefore, could make the domain
temporarily unavailable. However, if it just appears in the SLD zone,
it becomes almost unnoticeable. Figure 2a illustrates the resolution
process in the presence of the stale record. As mentioned earlier
(Section 2.1), when a resolver receives a request to map the domain
example.com to its IP address (

8
9

4

10

11

12

13
14

1) and cannot find the answer from

2Through out this paper we use the terms hijackable, vulnerable, and exploitable
interchangeably.

its cache, it forwards the query to the TLD’s DNS server (

ns[1,2].example.com

.com nameserver

example.com NS ns[1,2].example.com

example.com NS ns[1,2].example.com
example.com A IPcorrect
example.com NS ns[1,2].provider.com

ns[1,2].provider.com

example.com NS ns[1,2].provider.com
example.com A IPcorrect

example.com NS ns[1,2].example.com
example.com A IPcorrect

Resolver

2 3

5
67

8 1

4

), which
in turns responds with the domain’s NS records at the TLD (pointing
to ns.example.com) (

ns[1,2].example.com

.com nameserver

example.com NS ns[1,2].example.com

example.com NS ns[1,2].example.com
example.com A IPcorrect
example.com NS ns[1,2].provider.com

ns[1,2].provider.com

example.com NS ns[1,2].provider.com
example.com A IPcorrect

example.com NS ns[1,2].example.com
example.com A IPcorrect

Resolver

2 3

5
67

8 1

4

). This response (

8
9

4

10

11

12

13
14

1

) could be cached by
the resolver, which continues to query the returned nameserver at
the SLD zone (

ns[1,2].example.com

.com nameserver

example.com NS ns[1,2].example.com

example.com NS ns[1,2].example.com
example.com A IPcorrect
example.com NS ns[1,2].provider.com

ns[1,2].provider.com

example.com NS ns[1,2].provider.com
example.com A IPcorrect

example.com NS ns[1,2].example.com
example.com A IPcorrect

Resolver

2 3

5
67

8 1

4
) to get the domain’s A record (i.e., IPCorrect)(

ns[1,2].example.com

.com nameserver

example.com NS ns[1,2].example.com

example.com NS ns[1,2].example.com
example.com A IPcorrect
example.com NS ns[1,2].provider.com

ns[1,2].provider.com

example.com NS ns[1,2].provider.com
example.com A IPcorrect

example.com NS ns[1,2].example.com
example.com A IPcorrect

Resolver

2 3

5
67

8 1

4
).

This response is then sent back to the client (8
9

4

10

11

12

13
14

1

) and cached by
the resolver until its TTL expires (

ns[1,2].example.com

.com nameserver

example.com NS ns[1,2].example.com

example.com NS ns[1,2].example.com
example.com A IPcorrect
example.com NS ns[1,2].provider.com

ns[1,2].provider.com

example.com NS ns[1,2].provider.com
example.com A IPcorrect

example.com NS ns[1,2].example.com
example.com A IPcorrect

Resolver

2 3

5
67

8 1

4
). As we can see here, during

this process, the stale NS record at the SLD zone is not used3, and
therefore, its presence is almost oblivious.
Attack. Such a hidden stale record, however, can still be exploited
by an adversary to build and later trigger a resolution path that
leads to domain hijacking. Figure 2b illustrates how this zombie
awakening attack works: the adversary first claims the vulnerable
domain at the DNS hosting provider and then poisons the cache of
the targeted resolver with the A record through the stale NS record.

Specifically, the adversary sets an account at the hosting provider
directed by the stale NS record of the domain example.com (

8
9

4

10

11

12

13
14

1) to
claim the domain and set its RRs (

ns[1,2].example.com

.com nameserver

example.com NS ns[1,2].example.com

example.com NS ns[1,2].example.com
example.com A IPcorrect
example.com NS ns[1,2].provider.com

ns[1,2].provider.com

example.com NS ns[1,2].provider.com
example.com A IPcorrect

example.com NS ns[1,2].example.com
example.com A IPcorrect

Resolver

2 3

5
67

8 1

4

) at the same nameserver on
the stale record (i.e., ns.provider.com) (see Section 2.2). Here, the
adversary creates an A record for the domain that points to an IP
address under his control (i.e., IPAttacker).

To hijack the domain, the adversary activates the stale resolution
path through ns.provider.com to attack the A record by poison-
ing a target resolver. For this purpose, he strategically queries the
resolver for the NS records of the domain (

ns[1,2].example.com

.com nameserver

example.com NS ns[1,2].example.com

example.com NS ns[1,2].example.com
example.com A IPcorrect
example.com NS ns[1,2].provider.com

ns[1,2].provider.com

example.com NS ns[1,2].provider.com
example.com A IPcorrect

example.com NS ns[1,2].example.com
example.com A IPcorrect

Resolver

2 3

5
67

8 1

4

). If no authoritative
answer is found in the resolver’s cache, the resolver sends the
request to the TLD’s nameserver (

8
9

4

10

11

12

13
14

1

) and receives a NS RR with
ns.example.com (

ns[1,2].example.com

.com nameserver

example.com NS ns[1,2].example.com

example.com NS ns[1,2].example.com
example.com A IPcorrect
example.com NS ns[1,2].provider.com

ns[1,2].provider.com

example.com NS ns[1,2].provider.com
example.com A IPcorrect

example.com NS ns[1,2].example.com
example.com A IPcorrect

Resolver

2 3

5
67

8 1

4
). This nameserver is further contacted for NS

RRs in the SLD zone (

ns[1,2].example.com

.com nameserver

example.com NS ns[1,2].example.com

example.com NS ns[1,2].example.com
example.com A IPcorrect
example.com NS ns[1,2].provider.com

ns[1,2].provider.com

example.com NS ns[1,2].provider.com
example.com A IPcorrect

example.com NS ns[1,2].example.com
example.com A IPcorrect

Resolver

2 3

5
67

8 1

4
), which results in all such records, includ-

ing the one with ns.example.com and the stale record pointing
to ns.provider.com to be cached at the resolver side (

ns[1,2].example.com

.com nameserver

example.com NS ns[1,2].example.com

example.com NS ns[1,2].example.com
example.com A IPcorrect
example.com NS ns[1,2].provider.com

ns[1,2].provider.com

example.com NS ns[1,2].provider.com
example.com A IPcorrect

example.com NS ns[1,2].example.com
example.com A IPcorrect

Resolver

2 3

5
67

8 1

4
). Note

that in this case, the NS RR from the TLD zone is replaced by the
RRs (including the stale one) from the domain zone (8

9

4

10

11

12

13
14

1

) as the
authoritative response from the SLD zone has a higher trust level
than a referral from the TLD zone.

After that, the adversary can query the resolver for the domain’s
A record (

8
9

4

10

11

12

13
14

1

). Given that both NS records are cached, if chosen
randomly, the stale record has a 50% of chance to be used to find
the A record (

8
9

4

10

11

12

13
14

1

). When this happens, the entire attack resolution
path is activated: ns.provider.com returns the attack A record
(

8
9

4

10

11

12

13
14

1
), which is cached by the resolver until its TTL expires (

8
9

4

10

11

12

13
14

1

).
The adversary can ensure the success of such contamination by
repeatedly querying the resolver until he receives IPAttacker. Later,
when the resolver is contacted to resolve the domain (

8
9

4

10

11

12

13
14

1

) by a
legitimate client, IPAttacker is given as the response, and the traffic
of the follow-up visit is then directed to the attacker’s IP address
(

8
9

4

10

11

12

13
14

1
).
In our research, we implemented this attack on our domains to

check 17 hosting providers (e.g., AWS Route 53 and GoDaddy DNS
hosting) and 12 resolver operators (e.g., CloudFlare and Quad9). The
results show a high success rate (Sections 4.3), confirming that the
threat is indeed realistic and serious. We further demonstrate that
vulnerable domains with the exploitable stale NS records widely
exist using ZreFinder (Section 4).

3An exception is that the nameserver could be configured to also send the SLD NS RRs
to the resolver.

Find PVDs

Domains
(PVDs,

unresponsive NS)
Providers

 List

Find the frequently

used providers

Corresponding
PVDs

Apply heuristics

Hijackable

Domains

Blacklists

Data Collection Seized Domains Identification

Sinkhole IP/NS Reverse
Lookup

∪ DM

?
Whois

PDNS

Whois
Records

PDNS
Records

Delisted
Domain Identifier

Sinkholed
Domain Identifier

Extend
Sinkhole
Duration

DB

DS
Domains
on Hold

Sinkhole
Durations

∪
Seized
Domain
Profiles

DM

?
Whois

PDNS

Whois
Records

PDNS
Records

.TLD

Blacklists

Data Collection Seized Domains Identification

Sinkhole IP/NS Reverse
Lookup

∪ DM

?
Whois

PDNS

Whois
Records

PDNS
Records

Delisted
Domain Identifier

Sinkholed
Domain Identifier

Extend
Sinkhole
Duration

DB

DS
Domains
on Hold

Sinkhole
Durations

∪
Seized
Domain
Profiles

Identify PVDs

Identify Hijackable Domains

Check provider

if affected

Figure 3: Workflow of ZreFinder to identify hijackable do-
mains, where PVDs represents the potential vulnerable do-
mains.

4 UNDERSTANDING ZAW RISKS
In this section, we first present ZreFinder, a semi-automatic method-
ology for finding Zrefs, and how to utilize it for a large-scale dis-
covery of domains vulnerable to the Zaw attack. We also describe
a study to analyze whether open DNS resolvers can be used to
“awaken” zombie resolution paths for domain hijacking.

Figure 3 illustrates the workflow of ZreFinder: it first runs an
automated mechanism to scan public domains and identify those
containing stale NS records at the domain level (

8
9

4

10

11

12

13
14

1), called poten-
tially vulnerable domains or PVDs; then, from the nameserver in
those records, our approach determines those associated with DNS
hosting services. Furthermore, we manually analyze these services
to find out whether they allow a zombie resolution path to be built
and whether some hidden policies on handling public domains are
in place to prevent the PVDs from being exploited (

ns[1,2].example.com

.com nameserver

example.com NS ns[1,2].example.com

example.com NS ns[1,2].example.com
example.com A IPcorrect
example.com NS ns[1,2].provider.com

ns[1,2].provider.com

example.com NS ns[1,2].provider.com
example.com A IPcorrect

example.com NS ns[1,2].example.com
example.com A IPcorrect

Resolver

2 3

5
67

8 1

4

). The outputs
of the analysis are a list of vulnerable domains and their stale NS
records, which are considered Zrefs.

In our study, we collected Alexa’s top-1M [4] domains, together
with around 20K education and government domains collected from
Farsight’s DNSDB [33], Table 2. From these domains, ZreFinder
reported 4,914 PVDs with unresponsive NS records in their SLD
zones (Section 4.1). Furthermore, our approach discovered 12 vul-
nerable providers that allow one to make unauthorized claims on
their related PVDs among 17 popular DNS hosting providers. As a
result, 628 domains were confirmed to be hijackable (Section 4.2).
Finally, we present our study on resolvers which included: the 46
most popular resolvers [78], 11K open resolvers [28], and an or-
ganizational resolver, show that the vast majority of them can be
easily manipulated to trigger the domain hijacking attack.

4.1 PVD and Provider Discovery
Methodology. To identify PVDs, we built a scanner to automati-
cally inspect a large number of domains. Given a domain 𝑑𝑛, our
approach first locates all its NS records in the SLD zone (but not
in the TLD zone) and then evaluates whether the nameservers
they point to still resolve 𝑑𝑛’s DNS query requests. Algorithm 1

describes process. Specifically, for each domain (e.g., example.com),
we collect two NS record sets: the TLD NS RRSet (TLDns) and
the SLD NS RRSet (SLDns) for a differential analysis. Here the
TLDns are found by querying the domain’s TLD authoritative name-
server (e.g., a.gtld-servers.net) through dig NS example.com
@a.gtld-servers.net. We then continue to query all the returned
nameservers (e.g., ns[1,2].example.com) to acquire the SLDns,
e.g., through dig NS example.com @ns[1,2].example.com. After
that, our approach compares the TLDns and the SLDns to identify
the nameservers that appear on the NS records in SLDns but not in
the TLDns. For each such nameserver, we further look into whether
its NS record is indeed stale; that is, the target domain 𝑑𝑛 is not
configured at the nameserver [68], which causes any query for the
domain on the server to return a REFUSED status code [25]. When
the domain is confirmed to include such a stale NS record in its SLD
zone, it is considered to be a PVD.

Once PVDs have been discovered, our approach analyzes them
to identify the potential DNS hosting providers involved (pointed to
by their stale NS records), particularly the popular ones. To this end,
our approach first extracts the domain name from all nameservers
on the stale records and then selects the most prevalent ones to find
their providers. In most cases, the domain name for the nameserver
carries the provider’s name (e.g., hank.ns.cloudflare.com). Oth-
erwise, we have to resort to WHOIS information for the provider’s
domains: for example, the nameserver (ns51.domaincontrol.com)
does not provide any indicator about who the provider is, but the
WHOIS record for the domain shows that the provider is GoDaddy.
Findings. To study PVDs and their providers in the wild, we
scanned 1,016,449 domains, including Alexa’s top 1M websites,
and education and government domains gathered from the Farsight
passive DNS records (PDNS), based upon their sponsored TLDs
(sTLDs) such as .edu, and .gov. We also included some country-
specific sTLDs such as China (CN) and Saudi Arabia (SA). The
selection of SA domains was made due to the massive increase of
attacks recently targeting Saudi Arabian services [3, 54, 66]. Thus,
an adversary may leverage the trust inherited from vulnerable do-
mains under the sTLDs to execute amore deceiving attack. Similarly,
CN domains were selected due to the observed pervasiveness of
DNS resolution interception, in which some were abused for illicit
traffic monetization [51]. This suggests that adversaries may also
consider launching a Zaw attack against sTLDs domains. Table 2
(in Appendix A) presents the number of the domains under each
sTLDs used in our dataset. Scanning all these 1,016,449 domains,
ZreFinder discovered 4,914 PVDs along with their corresponding
SLD stale NS records and further reported the top 11 most preva-
lent DNS hosting providers associated with these records. Also,
we included 6 additional popular providers that offer free service,
according to an online list [69]. Table 1 presents these services
along with the number of associated PVDs. These services were
further manually inspected to verify whether the PVDs are indeed
exploitable (Section 4.2).

4.2 Hijackable Domain Identification
Just because a PVD has Zref (i.e., a stale NS record pointing to a DNS
hosting provider) it does not necessarily mean that the domain is
hijackable. The provider may have a protection in place, presenting

Algorithm 1: ZreFinder to identify PVDs
Input :𝐷 // List of domains in our dataset

Output :𝑃𝑉𝐷𝑠 // List of potential vulnerable domains

1 for 𝑑𝑛 ∈ 𝐷 do
2 𝑇𝐿𝐷𝑛𝑠 = ∅
3 𝑆𝐿𝐷𝑛𝑠 = ∅
4 𝑆𝐿𝐷𝑛𝑠_𝑜𝑛𝑙𝑦 = ∅
5 𝑃𝑉𝐷𝑠 = ∅
6 𝑇𝐿𝐷𝑛𝑠 = Query NS records at the TLD level
7 for 𝑛𝑠 ∈ 𝑇𝐿𝐷𝑛𝑠 do

// Query NS records at the domain’s level

8 𝑎𝑛𝑠𝑤𝑒𝑟 = query 𝑛𝑠 for NS records
9 𝑆𝐿𝐷𝑛𝑠 .add(𝑎𝑛𝑠𝑤𝑒𝑟)

10 end for
11 𝑆𝐿𝐷𝑛𝑠_𝑜𝑛𝑙𝑦 = 𝑆𝐿𝐷𝑛𝑠 −𝑇𝐿𝐷𝑛𝑠

12 for 𝑛𝑠 ∈ 𝑆𝐿𝐷𝑛𝑠_𝑜𝑛𝑙𝑦 do
13 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = query 𝑛𝑠 for A record
14 if 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑠𝑡𝑎𝑡𝑢𝑠 == (REFUSED) then
15 𝑃𝑉𝐷𝑠 .add(𝑑𝑛, 𝑛𝑠)
16 end if
17 end for
18 end for

a different set of nameservers than what the requested domain
already has as stale records. An interesting finding is that even in the
absence of the protection, as happened in most of the providers we
investigated, some PVDs still may not be hijackable. This is due to
the observation that the domain could still be possessed by another
account at the provider and resolved by a different nameserver than
the one in the stale record. Also to be considered is the possibility
that the provider imposes restrictions on the domains it hosts.

Apparently, the simplest way to validate a vulnerable domain, re-
gardless of these concerns, is just to claim it at a given DNS hosting
provider. This approach, however, could not ensure that no dam-
age will be inflicted on the domain since a successful claim could
result in an automatic assignment of an IP to the domain by some
providers. Also, there is a slim chance the stale NS record could be
used by a resolver, and if so, the outcome could be cached because
the provider nameserver no longer responds with REFUSED. There-
fore, our methodology avoids such a direct claim and instead runs
a series of tests, including an unauthorized claim analysis, to deter-
mine whether any ownership check is performed on the provider
side, and three domain exploitability assessments (DEAs) to under-
stand whether a PVD can indeed be hijacked on an unprotected
provider.
Unauthorized claim analysis. This analysis is used to find out
whether a domain can be claimed on a DNS hosting provider by an
unauthorized party. Specifically, we first register a domain and then
open two accounts with a provider: victim and attacker. Through
the victim account, an A record is configured to point to IPvictim
and NS records pointing to the provider is set at the SLD zone.
After confirming that the domain is indeed active, we remove the
domain from the victim account. Then, we confirm that the assigned
nameservers respondwith REFUSED status code when queried about

.edu
.gov

the domain to verify that the domain is no longer active at the
provider. Next, we attempt to claim the domain and set a different
A record pointing to IPattacker through the attack’s account with
the same nameserver assigned to the victim (so the stale NS record
can be used to hijack the domain). In the case that the provider
randomly assigns its nameservers, we continue to try until the
same nameserver shows up to serve the claim. This process can
be automated when the DNS hosting provider offers APIs (e.g.,
Amazon Route 53) for adding a zone and setting the RRs.
DEA 1: resolvable by another nameserver at provider. In our
research, we observed cases in which a domain has a Zref in addi-
tion to an active NS record both belong to the same provider. This
indicates that the domain is active under another account at the
provider. When this happens, an attempt to claim the domain with
the provider could fail. However, inspecting all PVDs’ TLD and
SLD zones is not a common approach to find out whether they
are in this category as the active NS records may not show up in
the zones. Our solution is to utilize PDNS data to identify all the
nameservers associated with a DNS provider and then query all of
them with each PVD whose stale record points to the provider. If
any of them does not respond with REFUSED, we suspect that the
domain may not be exploitable. To confirm this, we further utilize
the two accounts on the provider to claim our own domain: if the
attempt fails, the PVD is considered not vulnerable.
DEA 2: registration data at provider. Also possible is the situa-
tion that the DNS hosting service is actually operated by a registrar:
for example, GoDaddy offers both DNS hosting and domain regis-
tration services. In this case, the provider is in a position to check
the ownership although it may not do that. To evaluate the ex-
ploitability of a PVD, our approach checks its WHOIS information
to find out whether its registrar is also the provider that the Zref
points to. Then, for all the registrars/providers discovered in this
manner, we further register with each of them a domain under our
control through one account and try to claim it from a different
account through its DNS hosting service to determine whether the
domain can be captured by one without proper ownership.
DEA 3: TLD restriction at provider. Another observation of our
research is that some providers may stop serving domains with spe-
cific TLDs (mainly country code TLDs operated by some countries).
As a result, the PVDs with these TLDs can no longer be exploited
through the providers. To identify the presence of such restrictions,
our approach utilizes two strategies. For each DNS provider, we first
find out all their PVDs’ TLDs. Then for each TLD, we try to claim a
non-existing domain with the TLD at the provider. If the provider
fails to approve the claim, a justification will be returned about
the restriction. Although this strategy works for most providers,
some (actually, only GoDaddy found in our research) do not allow
claiming an unregistered domain. In this case, we resort to another
strategy, utilizing PDNS to identify all records with domains under
the TLD in question pointing to the provider’s nameserver. The
domains returned in PDNS are then used to send real-time queries
to its corresponding nameserver at the provider: if all of them fail
to resolve, we hypothesize that a restriction has been placed on the
TLD by the provider.

Findings. In our research, we evaluated all 1,304 PVDs that are
associated with the selected providers using the four tests and ob-
tained the results presented in Table 1. Among the 17 providers
studied, 14 allow unauthorized domain claims resulting in 628 PVDs.
Oracle Dyn no longer offers DNS hosting service, so all associated
PVDs cannot be claimed and thus not included in our experiments.
The two remaining providers are SEO web hosting and CloudFlare.
From our analysis, we found that SEO web hosting refuses claims
for a domain removed from their service stating that the domain
already exists in their servers. This prevented reclaiming our do-
main from the attackers account after we deleted it from victim
account. However, it is not clear if this was a result of a security
check or a failure to properly clean up the removed domains from
their system. We also found that CloudFlare, in particular, has a
strong verification mechanism to prevent unauthorized claims of a
domain. Specifically, to prevent the abuse of stale records, when a
client requests to add a domain to its service, it will first check the
domain’s current records through DNS queries: if the SLDns of the
domain already contains any nameserver pointing to CloudFlare it
will assign a different set of nameservers to it, thus requiring the
client to update the domain’s current records in order to activate
the domain at this service.

In the experiment for DEA 1, we analyzed all PVDs associated
with 11 affected providers. PVDs with Zref pointing to Amazon
Route 53 were excluded from this test because Amazon Route 53
allows a domain to be active under more than one account with
different NS records (Section 2.2). Thus, all its 75 associated PVDs
can be exploited. For the PVDs associated with the 11 providers, 155
of them have at least one nameserver that did not return REFUSED.
Therefore, they were considered not exploitable.

When it comes to DEA 2, from the registrar information of the
PVDs, 3 providers were found offering domain registration service,
GoDaddy, Hetzner Online GmbH and RU Center. Among them, only
GoDaddy has protection in place to prevent one from claiming the
domain not registered through his account. As a result, 38 PVDs that
have a Zref pointing to GoDaddy turned out to be not exploitable,
since they are all registered throughGoDaddy. By running DEA 3 on
all the providers, we observed that Domain.com stopped supporting
the .ir domains, which leads to dropping 104 PVDs from our list.

4.3 DNS Resolver Analysis
For a PVD associated with an unprotected provider, a zombie res-
olution path (i.e., claim of the domain with an A record pointing
to an attack server) can be constructed on the DNS provider side
(Section 4.2). However, a Zaw attack can only succeed once this
path is “awakened,” being utilized to answer queries on the domains
at resolvers. In our research, we further investigated whether public
recursive resolvers can indeed be manipulated to enable the attack.
For this purpose, we analyzed three sets of recursive resolvers: 46
popular public resolvers offered by 12 well-known DNS service op-
erators [78], around 11K open resolvers on a public list [28], and a
resolver of an organization serving its members through DHCP. In
addition, we performed experiments on six DNS implementations
(e.g., Bind [1], Unbound [50] and Microsoft DNS [56]). Compared

D
N
S
H
os
ti
ng

Pr
ov

id
er

A
ff
ec
te
d?

D
EA

1?

D
EA

2?

D
EA

3?

#
hi
ja
ck

ab
le

do
m
ai
ns

/#
P
V
D
s

CloudFlare [18] No - - - 0/193
Amazon Route 53 [6] Yes ◦ ◦ ◦ 75/75
GoDaddy DNS hosting [36] Yes • • ◦ 19/200
Oracle Dyn [27] NA - - - 0/38
Domain.com [29] Yes ◦ ◦ • 82/185
Contabo [19] Yes ◦ ◦ ◦ 91/91
Hetzner Online GmbH [38] Yes ◦ ◦ ◦ 244/244
CentOS Web Panel [60] Yes ◦ ◦ ◦ 65/65
RU Center [67] Yes • ◦ ◦ 15/24
DNS Made Easy [30] Yes • ◦ ◦ 14/15
DigitalOcean [26] Yes ◦ ◦ ◦ 14/14
NS1 [59] Yes • ◦ ◦ 4/6
SEO Web Hosting [39] No - - - 0/149
Hurricane Electric Hosted DNS [31] Yes ◦ ◦ ◦ 3/3
ClouDNS [17] Yes ◦ ◦ ◦ 2/2
GeoScaling [35] Yes - - - -∗
1984 Hosting [34] Yes - - - -∗

Total 628/1304

∗No PVDs found in our dataset.
Table 1: The study of DNS hosting providers where the ad-
versary can make unauthorized claims on another party’s
domain. (•: PVDs dropped;◦: no PVDs dropped)

with prior research [42, 46], our study involves more resolvers, in-
cluding those never analyzed before, such as the CloudFlare public
resolver.

To perform domain hijacking in an ethical way (Section 4.4), we
utilized a domain under our control. Specifically, we registered a
domain, configured its RRs to include a Zref (an exploitable stale NS
record in SLDns) and further built up a zombie resolution path with
a DNS hosting provider (i.e., DigitalOcean), as stated in Section 3.
Then, we sent a series of DNS queries on the domain to each resolver
to verify whether it can be utilized to execute the Zaw attack. We
designed two experiments: one against public resolvers, and the
other against popular DNS implementations. In the following, we
elaborate on the study.
Public resolvers – experiment setting. In our study, we config-
ured our own domain so that the TLDns were not consistent with
its SLDns. Specifically, the domain has two NS records in its TLD
zone and four NS records in its SLD zone. Among four records in
SLDns, two of them are identical to the NS records in the TLDns
and two others considered to be under the attacker’s control. This
configuration setting is chosen to obtain a more realistic measure-
ment because, based on our observation in Section 5.2 there is an
overlap in the NS records between TLDns and SLDns which affects
the probability of selecting the Zref. Furthermore, TLDns were
configured to respond with the A record carrying the IP set by the
domain owner (IPcorrect), while the two nameservers in SLDns
were set to respond with the attacker’s IP (IPattacker). We also
confirmed that our DNS client did not cache any DNS response.

We chose a short TTL value (i.e., 30 seconds) for the A record
carrying IPcorrect to make it quickly expire in the resolver’s cache
so we could force the resolver to launch a recursive resolution
process for follow-up requests4. Also, we set the TTL for the A
record of IPattacker as 4 hours to ensure that it would stay in the
resolver once it is cached and, therefore, increases the chance to
find a cache-hit at one of the multiple instances of the resolver. In
particular, it applies to resolvers that implement anycast addressing
where the endpoint address has multiple routing paths to two or
more destinations for load balancing [2].
Public resolvers – experiment. During the experiment, we is-
sued unique queries for each resolver in our dataset to avoid the
answer being cached by any intermediate server, as in [21]. In par-
ticular, each subdomain (i.e., resolverID.ourDomain.tld) is used
to query its corresponding resolver.

Using such queries, we performed a 3-step domain hijacking
attack for each resolver in our dataset. First, we queried the A record
for our generated subdomain to cause the resolver to cache the
record with IPcorrect. The purpose here is to mimic the real world
scenario in which resolvers cache DNS records for popular domains.
Second, we queried the NS record of our domain to evaluate whether
the resolver could overwrite cached TLDns with the SLDns (i.e.,
the four NS in SLDns with two records controlled by the attacker).
Third, we repeated the first step until we received IPattacker as
a response. In our experiment, this has been done up to 50 times.
For each unsuccessful attempt, we queried the NS records again
(the second step) to improve the chances of success in the next
attempt to receive IPattacker. This is because popular public DNS
resolvers use anycast for load balancing [51], and by repeating this
second step, we make it more likely to have the SLDns (including
the Zrefs) cached by as many affiliated resolvers as possible. The
limit on the number of attempts was chosen for ethical reasons to
avoid overloading the resolvers.

To confirm that the resolver cached the attacker’s A record, we
further queried each popular resolver for the A records of the sub-
domains. This test was conducted within one hour after the third
step. We found that all vulnerable resolvers had the record cached.
In our research, we repeated this experiment five times on each
resolver to calculate the average number of attempts required to
have the attacker’s A record cached by vulnerable resolvers.
Public resolvers – findings. In our experiment, we performed
the above 3-steps probing all resolvers.

The result with 12 top public resolver operators [78] is presented
in Table 3 (in Appendix B): 10 out of them (83.33%) have at least
one affected resolver. The operators include CloudFlare public DNS,
OpenDNS, and Quad9. In addition, we found that a successful at-
tack took 1 to 28 attempts with an average of 6.5 over all affected
providers and a median of 3.

We further investigated whether these high-profile resolvers val-
idate DNSSEC-signed domains, which can mitigate the Zaw threat
(see Section 6). Specifically, we queried each resolver for a domain
with a broken DNSSEC configuration (i.e., www.dnssec-failed
.org). If the resolver returns an A record, we know that it does not

4Note that the TTL setting here just serves the purpose of understanding whether
public resolvers can be manipulated and in Section 5.2 we report another study that
measures the attack complexity under real-world TTLs.

Figure 4: Geolocation distribution of the affected resolves.

support DNSSEC [70]. In our study, we observed that all top pop-
ular resolvers support DNSSEC except for Yandex.DNS. However,
among all 628 vulnerable domains discovered, only one is properly
DNSSEC-signed (Section 5.2).

Among 11,613 open resolvers [28], 11,072 responded to our
queries and 7,044 are vulnerable to our cache poisoning attack
(63.62% of the responding resolvers). Interestingly, only 1541 of the
vulnerable resolvers (21.88%) support DNSSEC. Figure 4 shows the
distribution of these resolvers’ geolocations: most of them are in
US, followed by Russia. We also concluded that the resolver of the
organization is affected. The attacker’s IP address was found to be
still in the cache four hours after our experiment.
DNS implementation – experiment setting. We further looked
into the behaviors of six DNS implementations (i.e., Bind, Unbound,
Microsoft, PowerDNS, MaraDNS, and DJB dnscache) 5 in the pres-
ence of the Zaw attack. Specifically, we investigated whether an
explicit query of the NS record is required to activate the Zaw attack
(step 3 in Figure 2b). The experiment setting is very similar to that
for the study on the public DNS, except that we assumed no overlap
between TLDns and SLDns, and all SLD nameservers under the
attacker’s control, for the purpose of removing nondeterminism in
nameserver selection.
DNS implementations – experiment. Our experiments were
performed in the following two scenarios: 1) immediately querying
for the A record to find out whether the resolver will query any SLD
nameserver in its default resolution path; 2) explicitly querying for
an NS record before querying for the A record. Whenever IPattacker
is returned as a response, the resolver is considered vulnerable. Note
that the cache of the resolver was cleared before the experiment
under each scenario.
DNS implementation – findings. As shown in Table 4 (Appen-
dix B), none of the tested DNS implementations include SLDns in
their standard resolution path under their default settings 6. How-
ever, Bind, Unbound, PowerDNS, Microsoft DNS, and DJB dnscache
are confirmed to be vulnerable to the Zaw attack when the NS
record is explicitly queried for.

5DNSmasq was omitted since it is not a standalone recursive resolver, and its behavior
depends on the selected upstream DNS server. Therefore, its susceptibility to our
attack depends on whether the upstream DNS server is vulnerable. Also, Big IP was
not included due to some technical challenges and limited support to our trial account.
6Activating “harden-referral-path" option in Unbound will cause the attack to succeed
even if the NS was not queried explicitly.

4.4 Ethical Consideration
To avoid the potential negative impact of our experiments on real
world online services, i.e., poisoning the cache of DNS resolvers with
invalid records of active domains, we directly sent our queries to
TLDs nameservers and PVDs’ authoritative servers. None of these
queries were delivered through a caching resolver (Section 4.1).
Also, we only conducted the experiments on affected resolvers on
domains that we control and avoided affecting resolutions of the
PVDs (Section 4.3). Moreover, we have reported our findings to the
owners of vulnerable domains and will help to address the problem
when needed. Also, we plan to share our findings with DNS hosting
provider and resolver operators.

5 ANALYSIS AND MEASUREMENT
In this section, we discuss our findings based on the in-depth analy-
sis of 628 hijackable domains identified in our research and measure
the efforts required by an attacker to launch a successful Zaw attack.

5.1 Characteristics of Hijackable Domains
Landscape. In total, we discovered 628 hijackable domains un-
der the threat of Zaw attack. Four vulnerable domains are under
the selected sponsored TLDs, and the remaining (624) are among
the Alexa’s top 1M. Figure 5a (in Appendix C) shows the top-11
categories of found hijackable domains. These were categorized
based on information from Website Categorify [15], with 195 do-
mains uncategorized. The hijackable domains fall under a wide
range of different categories. The most prevalent category is Sports
with 63 domains, which mainly consists of sports betting web-
sites (e.g., correctscore1x2.com), followed by business websites
with 34 domains (e.g., quecentre.com), financial websites (e.g.,
sharmastocks.com) with 31 domains, and shopping websites with
31 domains (e.g., brandhousedirect.com.au). Exploiting these do-
mains may cause an imminent financial loss if hijacked. Also, we
identified 18 vulnerable domains categorized as “cloud/hosting”
(e.g., avrohost.com), which are regarded as security-critical since
the security of these services could affect all the businesses hosted
there. In addition, we found 6 vulnerable domains that belong to
government entities: 4 Saudi Arabian, one Colombian, and one
Malaysia, all under their corresponding ccTLD (i.e., gov.ccTLD).
Also found are 31 education-related websites; for example, one
university in the US (swau.edu), and 2 in Russia (msun.ru, and
usma.ru). An attacker can exploit the high trust level of these gov-
ernment and education domains to orchestrate a wide range of
illicit activities, such as phishing attacks to collect identity infor-
mation, and malware distribution. We elaborate on the cases with
high security impact in Section 5.3

The distribution of the hijackable domains among the affected
providers from ourmethodology in Section 4.2 is shown in Figure 5b
(in Appendix C). We observed that 244 of the vulnerable domains
(38.85%) have Zrefs pointing to Hetzner Online GmbH. Given that its
DNS hosting service is free, an adversary can exploit any of these
domains with no cost.
TLDs of hijackable domains. Figure 5c (in Appendix C) shows
the top-10 TLDs of the hijackable domains observed in our research.
The most prevalent TLD is .com with 380 domains (i.e., 60%). This

is expected due to its popularity [41]. In regard to country code
TLDs (i.e., ccTLDs), .gr and .ir are found to have most hijack-
able domains (42 and 22 domains, respectively). We argue that in
some cases the existence of the Zref is due to the transition of the
DNS hosting from the affected provider to a new DNS server (as
investigated below in Zref origin investigation). We also observed
in Section 4.2 that domain.com is not currently supporting .ir do-
mains. Domain.com claims that this decision is due to Federal laws
that prohibit providing service to some locations, including Iran.
So, the large number of hijackable .ir domains that have a Zref
pointing to other providers could be due to a burst of transition
from international providers to in-house DNS servers, as an attempt
to maintain the domains’ availability. To support this claim, we
manually sampled some .ir domains and found that their active
NS records are indeed pointing to Iranian hosting services (e.g.,
darkoobhost.com). However, the Zref still existed in the SLDns.
For the .gr, we observed the transition to in-house services (e.g.,
datapack.net); however, the justification for the burst is not clear.
Exploitable Duration. To investigate the duration of exploitabil-
ity, we conducted a longitudinal study spanning over 91 days. Fig-
ure 6 (in Appendix C) shows the distribution of the duration in
which hijackable domains hold Zrefs. Our results showed that 565
(89.97%) out of the 628 domains were vulnerable for at least 30 days,
while 410 (65.29%) domains remained vulnerable for the whole anal-
ysis duration. The long vulnerability duration provides an adversary
with a good opportunity to act maliciously and exploit it. However,
only 31 (4.93%) domains were found vulnerable for fewer than 10
days. When manually sampling these domains to explore the origin,
we found 8 IT related domains, all either personal blogs or small IT
business. This could indicate a careful clean up by domain owners.
Zref origin investigation. We argue that part of the reason why
a Zref exists is when the domain’s zone information from one DNS
hosting provider is imported to a new DNS server. To this end, we
utilized PDNS data to examine the historical DNS records for all the
hijackable domains. Specifically, if a Zref occurs at the TLDns and
then later disappears, it suggests a transition has happened to a new
DNS server. As a result, we indeed observed 109 (17.36%) hijackable
domains showed the transition behaviors. It is important to note
that PDNS data is mainly dependent on the resolution requests for
the domains, thus, the number was estimated as a lower bound.

5.2 Measuring Attack Complexity
We measure the complexity of a Zaw attack in terms of: (1) the
possibility for an adversary to find a time slot (i.e., a valid A record
not in the cache) to poison the records of the hijackable domains, (2)
the probability for an affected resolver to select a Zref, and (3) proper
deployment of DNSSEC on hijackable domains. A measurement on
the maximum TTL value limit for popular resolvers is included in
Appendix C.
Find a cache-miss. The Zaw attack can only be launched when a
vulnerable domain’s valid A record is not in the cache of an affected
resolver (Section 3). To estimate how often such cache-miss appears,
we query affected resolvers occasionally to resolve exploitable do-
mains. Specifically, we queried 40 affected resolvers for the A record
of all 628 hijackable domains with a “+norec” option, which asks
the resolver to respond only from its cache. Given the response

with NOERROR status, if an A record is received in the answer section,
it means that the domain is in the cache of the resolver; however, if
the answer section is empty, we considered the domain not to exist
in the cache (i.e., cache-miss). We consistently ran this experiment
for 5 days. To avoid overloading the resolver, we sent a query ev-
ery 30 seconds. In total, we queried each domain for 25 times and
reported the responses.

Looking into the responses from the 5 days, we observed in-
consistent behaviors by resolvers. Specifically, some resolvers (e.g.,
CloudFlare) responded with NOERROR status and then responded
with an error status (e.g., SERVFAIL). This could be due to the utiliza-
tion of anycast addressing in which some instances of the resolver
support “+norec” option while others disabled it. In addition, some
resolvers (e.g., Dyn DNS) always respond with an error status. This
could indicate that these resolvers disabled the “+norec” option for
privacy concerns to prevent cache snooping [47].

Table 5 (in Appendix C) shows the cache-miss rates of resolvers
supporting “+norec”. Here, we measured the consistency rate, which
represents the ratio of the number of NOERROR responses to the total
number of responses. A higher rate indicates consistent support for
“+norec” among the instances of the resolver. Also calculated is the
cache-miss rate, which represents the rate of the number of cache-
misses over the total number of NOERROR responses. As resolvers
which belong to the same operator showed similar consistency rates
and cache miss rates, we only present the average of consistent
rates and cache miss rates of resolvers under the same operator.
Among the 10 resolver operators, we observed that 6 (e.g., Dyn
DNS) providers have low support for “+norec”. However, some
error messages may be caused by internal configurations such
as filtering. The other 4 operators generally accept the “+norec”
option (e.g., OpenNIC). More importantly, the cache-miss rate for
the exploitable domains at these resolvers is nearly 99%. It means
that it is not challenging for an attacker to launch a Zaw attack
against these domains.
Zref selection. A resolver selects a specific nameserver from the
returned NS RRSet for any follow-up queries of the corresponding
domain based on different criteria (see section 2.1). To measure
the attack’s success rate, we are interested in investigating the
probability that an affected resolver selects a Zref. We define the
probability that a resolver selects a Zref as:

P(𝑍𝑟𝑒 𝑓) = P(𝑁𝑆𝑇𝐿𝐷𝑛𝑠) . P(𝑍𝑟𝑒 𝑓𝑆𝐿𝐷𝑛𝑠 | 𝑁𝑆𝑇𝐿𝐷𝑛𝑠) (1)
where, P(𝑁𝑆𝑇𝐿𝐷𝑛𝑠) is the probability of selecting a nameserver

from TLDns and P(𝑍𝑟𝑒 𝑓𝑆𝐿𝐷𝑛𝑠 | 𝑁𝑆𝑇𝐿𝐷𝑛𝑠) is the probability of
selecting a Zref from SLDns given that a nameserver has been
selected from TLDns. For each domain, we averaged P(𝑍𝑟𝑒 𝑓) over
all the snapshots. Here we assumed that the probability of selecting
any nameserver from the NS RRSet are equal.

Figure 5d (in Appendix C) illustrates the distribution of the Zref
selection probability among the hijackable domains. We found that
the Zref selection probability is relatively high in our identified
hijackable domains. Specifically, we found 391 (62.26%) of these
domains have a Zref selection probability of 0.5 or higher. Even
worse, 270 (42.99%) domains have a Zref selection probability of 1.
DNSSEC-signed domains.Domainswith properly deployedDNSSEC
are protected against this attack due to the chain of trust provided

by this protocol. DNSSEC is an extended version of DNS that uti-
lizes public key infrastructure (PKI) to provide data integrity on
DNS responses [77]. We investigated the deployment of DNSSEC
on the identified hijackable domains to further assess this vulner-
ability. DNSSEC provides the integrity of DNS records by intro-
ducing three main record types, including DNSKEY records, RRSIG
(Resource Record Signature) and DS (Delegation Signer) records.
DNSKEY contains the public keys used to sign the records. For each
RRSet, there exists a corresponding RRSIG record that contains a
digital signature for it. Also, a DS record is placed at the parent
zone and holds a hash of the child’s signing key. A properly signed
domain must include and configure these records correctly.

To check the level of the DNSSEC deployment for the hijackable
domains, we first automatically queried each domain for DNSSEC
records that facilitate the validation process, i.e., DNSKEY, RRSIG,
and DS. Domains that do not have these three records configured are
not considered signed properly [16]. For domains that set all these
records, we then utilized a DNS checking tool (i.e., Zonemaster [81])
to investigate if the signatures are expired or broken.

Our study reveals that a large number of the hijackable domains
have none of the three record types configured. Specifically, 619 do-
mains (98.56%) did not configure any DNSKEY, RRSIG, or DS records.
In contrast, we only found 8 (1.27%) domains that have at least
DNSKEY record configured, which suggests there was an attempt of
deploying DNSSEC for these domains. In addition, only one domain
(moodysanalytics.com) was found to deploy DNSSEC properly.

5.3 Case studies
Here we introduce several typical domains with Zrefs, which were
used in critical services. In particular, we found 2 domains (twigaw
allet.com for TWIGA wallet, onfastspring.com for FastSpring)
used as payment facilitation services, and one domain that is oper-
ated by a US airport (flypittsburgh.com for Pittsburgh Interna-
tional Airport). The Zref selection probabilities for these domains
are (0.33, 0.5, 0.2), respectively (Section 5.2). For FastSpring, an
SaaS e-commerce platform, we utilized PublicWWW [64], a source
code search engine, to estimate the number of domains that used
this service to process the online payment, and found 768 websites
connecting to this domain. TWIGA wallet facilitates payment ex-
change and online purchases. Hijacking such a service is critical as
an adversary will be able to steal payment information.

It is important to note that none of the security-critical domains
discussed in this case study are DNSSEC-signed. The lack of the
utilization of DNSSEC poses an increased risk of domain hijacking.
Furthermore, all these domains were found exploitable for a rela-
tively long time, at least during whole duration of our analysis, i.e.,
91 days.

6 DISCUSSION
Recommendation for DNS hosting providers. Our study un-
covered shortcomings within the domain ownership verification
procedures implemented by most of the DNS hosting providers
(Section 4.2). To mitigate this issue, for DNS hosting services that
use a fixed set of nameservers (e.g., DigitalOcean), the provider can
require a customer to add a randomly generated NS record at the
TLD level for the domain ownership verification. Specifically, such a
random NS record could be of the format of random.provider.TLD.

The random label could be generated based on the costumer’s iden-
tity information such as his/her account email address and IP.When
validating the domain ownership, the provider could require the
customer to add this random record at the registrar. The provider
should only activate a domain once it observes this random record
in the domain’s resolution path. Note that this random nameserver
does not need to be a stand-alone nameserver; it could have its IP
pointing to one of the actual nameservers used by the provider. For
DNS hosting services who randomly assign their nameservers (e.g.,
GoDaddy), we suggest checking the existence of stale NS records
at SLDns by enumerating all possible resolution paths for each do-
main of their customers. When such record is found, a completely
different set of NS records should be assigned.

In addition, we argue that one cause for Zaw attacks is that some
DNS hosting providers will copy all the current DNS records for the
added domain, including the NS record (Section 5.1). This design
choice is adopted to make the new service transfer of the domain
transparent and to limit the website’s downtime. However, this
decision has its drawbacks, especially when these NS records are
associated with another service. Although the provider allows the
customer to edit these records, the customer is not aware of the
risks posed by keeping these records, especially when they become
stale. Thus, we suggest that the DNS service providers alert their
customers to delete these records to mitigate this risk. Also, DNS
hosting providers can gradually decrease the TTL values of these
NS records and then eventually delete them proactively from the
domain’s zone. This will allow sufficient time for these records to
be cleared from the caching systems that have cached them in the
past and thus will not negatively affect the domain’s availability.
Protection against DNS cache poisoning. Our study showcases
a practical attack scenario of cache poisoning exploiting stale NS
records at SLD zone, which circumvents the protection of current
caching rules. We suggest that the caching rules should be improved
to mitigate Zaw attack. Specifically, as suggested by Jiang et al.,
the bailiwick rule could be updated to cache authoritative data that
resides at the TLD level [42]. Also, the credibility rule could assign
a higher trust level to data from the TLD zone than the data from
the SLD zone. As an example, MaraDNS [55], a DNS implementa-
tion, has already adopted the suggested bailiwick rule [42]. The
importance of deploying these suggestions becomes more appar-
ent, especially with the popularity of DNS hosting service which
allow any customers to create a zone for a domain of deactivated
accounts even if s/he do not own the domain. Note that a recent
RFC draft [40] is proposed to improve the DNS standards in RFC
1034 and RFC 1035 [57, 58]. This draft suggests explicitly validating
the NS sets with the child (the SLD zone), as already implemented
with ’harden-referral-path’ in unbound. As a result, the attack we
propose becomes straight-forward to execute, as an explicit NS
query via the affected resolver is no longer necessary. Hence, we
suggest that operators of major DNS resolvers do not implement
this, until DNS hosting providers have widely addressed the issue
we uncovered in this paper.

In addition, properly DNSSEC-signed domains are protected
from cache poisoning attacks if the users accessing theses domains
are using DNSSEC validating resolvers [7]. In particular, an attacker
cannot properly sign new records for the hijacked domains. That
is because she does not have the private signing key, which will

be used to generate correct RRSIG for the new records. Even if the
attacker tries to generate a new signing key, it will not match the key
stored as a DS record that is placed at the TLD. As a result, the chain
of trust will be broken. However, recent studies [16, 79] showed that
the current deployment of DNSSEC by domain owners or resolvers
is far from perfect. More importantly, our results showed that only
one of the vulnerable domains is properly signed. (Section 5.2).
Hence, we advocate the faster deployment of DNSSEC.
Limitations. In the experiment of affected resolvers (Section 4.3),
we made the minimum effort to have the attacker’s IP address
cached at the resolvers. It is worth noting that this does not guar-
antee that all the traffic of an affected domain will be diverted to
the attacker’s IP address. Particularly, a client’s local cache at the
browser or the operating system may still point to correct IP ad-
dress. In addition, due to the use of anycast addressing by DNS
resolvers, for a large-scale attack, the adversary needs to success-
fully poison as many affiliated resolver servers as possible for a
more effective attack. However, we believe that these obstacles
could be bypassed easily. In particular, the local cache will clear
out eventually and then the client will query the recursive resolver.
In addition, the attacker can run his/her attack from different ge-
ographical location to infect a broader range of resolvers such as
injecting his/her attack code in JavaScript advertisement. However,
to carry out a stealthy version of this attack, the adversary could
just target limited instances of the resolvers’ servers.

Also, the measurement on the cache-miss rate (Section 5.2) was
conducted from one server. Ideally, it could be executed from differ-
ent geolocations to observe a wider range of caching samples. This
measurement serves as initial estimate and a large-scale version of
it is considered for future work.

7 RELATEDWORK
DNS security. A body of work have covered different aspects on
DNS resolution process and the behavior of public resolvers. Yu
et al., [80] studied the aspects that influence resolvers to select a
specific NS record form a set of authority servers for further queries.
Other research investigated manipulation resolution process due
to malware, censorship, or monetizing incentives [21, 49, 51, 62].

Meanwhile, different models were proposed to poison and pro-
tect the cache. For example, Son et al. [72] presented an analysis of
different types of cache poisoning. The Bailiwick rule and Credi-
bility rule are introduced [76] to protect resolvers from a variety
range of attacks against the cache [8]. However, Kaminsky [44]
introduced a type of attack that exploits the credibility rule to over-
write cached data with the response from referral section. Different
defense mechanisms were introduced in [20, 63]. Also, Alharbi et
al. [5] designed an attack to poison local cache of different operat-
ing system. In addition, Jiang et al. [42] showed that by abusing the
Bailiwick rule and the Credibility rule, some revoked domains may
still be resolvable by extending their TTL value. Similarly, klein et
al. presented different attack scenarios to overwrite the cache [46].
Unlike prior efforts, in our research, we showed that abusing weak
verification processes at DNS hosting providers makes these attack
scenarios practical.
Domain Hijacking. A wealth of research has been conducted on
domain hijacking [10, 14, 52, 75]. For example, Liu et al. showed the
possibility of hijacking a domain through its stale records that are

still pointing to publicly available resources. Specifically, they sur-
veyed stale NS records that point to only expired domains. In addi-
tion, they investigated CNAME, MX records pointing to publicly avail-
able resources, such as cloud providers, expired domains, and mea-
sured A records using deactivated cloud providers’ accounts [52].
Vissers et al. presented different domain hijacking scenarios, such
as nameserver dependency, outdated Whois records, typosquatting
and bitsquatting [75]. Bryant showed that he was able to take con-
trol over all .io TLD domains through the TLD’s stale NS records [14].
Borgolte et al. analyzed a use-after-free vulnerability that causes
a domain takeover by abusing stale A records pointing to cloud
providers: an adversary can claim the corresponding IP address of
the stale record at the provider and then issue an SSL certificate
through automated certificate authority (e.g., Let’s Encrypt). They
also proposed a new approach to validate domains in the automated
certificate management environments of CAs [10].

Other research presented detection methodologies to detect hi-
jacked domains, such as [11, 53]. In contrast to previous work, we
investigated stale NS record at the domain’s level. Unlike stale NS
records that exist at the TLD level, stale NS records at the domain’s
level are stealthier and more difficult to be noticed by the domain
owner. In addition, in our research, we showcased the attack sce-
nario, where by exploiting the weak validation procedures of DNS
hosting providers, attackers can hijack vulnerable domains that
have stale records residing at their domain zones.
DNS Misconfigurations. Numerous studies have looked into var-
ious kinds of DNS misconfiguration [9, 23, 24, 37, 43, 48, 61, 65, 71],
including the NS records inconsistency between the TLDns and
the SLDns. Although it’s known that this type of misconfiguration
affects the availability of a domain, in our research, we showed that
inactive NS records in SLDns can be easily acquired and activated
by an attacker, thus, leading to domain hijacking.

8 CONCLUSION
This paper comprises the first large-scale study on the menaces of
stale NS records in the SLD zone. We have highlighted that these
records can be easily exploited, causing a stealthy hijacking of ac-
tive domains associated with DNS hosting services. By scanning
over 1M high-profile domains, we identified 628 hijackable do-
mains, affecting government agencies, public services, and large
corporations. Our research further shows prominent DNS hosting
services (e.g., Amazon Route 53) and popular public resolvers (e.g.,
CloudFlare) are all vulnerable to the attack. Moving forward, we
investigated a set of mitigation strategies to help the affected parties
defend against this new security risk.

ACKNOWLEDGMENTS
We thank our shepherd Tobias Fiebig and the anonymous reviewers
for their insightful comments. This work was supported in part by
the National Science Foundation under CNS-1838083, 1801432 and
1618493. Any opinions, findings, conclusions or recommendations
expressed in this paper do not necessarily reflect the views of the
NSF.

REFERENCES
[1] Bind 9. 2020. Internet Systesm Consortium. https://www.isc.org/bind/.

https://www.isc.org/bind/

[2] Joe Abley and Kurt Erik Lindqvist. 2006. Specification for DNS over Transport
Layer Security (TLS). RFC 4786. RFC Editor. https://tools.ietf .org/html/rfc4786

[3] Salem Alelyani and Harish Kumar. 2020. Overview of Cyberattack on Saudi
Organizations. Journal of Information Security and Cybercrimes Research 2 (2020).

[4] Alexa. 2018. Alexa - Top sites. https://www.alexa.com/topsites.
[5] Fatemah Alharbi, Jie Chang, Yuchen Zhou, Feng Qian, Zhiyun Qian, and Nael

Abu-Ghazaleh. 2019. Collaborative Client-Side DNS Cache Poisoning Attack.
In proceedings of the IEEE INFOCOM Conference on Computer Communication.
1153–1161.

[6] Amazon. 2017. Amazon Route 53. https://aws.amazon.com/route53/.
[7] Derek Atkins and Rob Austein. 2004. Threat Analysis of the Domain Name System

(DNS). RFC 3833. RFC Editor. https://tools.ietf .org/html/rfc3833
[8] Steven M Bellovin. 1995. Using the Domain Name System for System Break-ins..

In proceedings of the USENIX Security Symposium.
[9] Petar D Bojović and Slavko Gajin. 2017. An approach to evaluation of common

DNS misconfigurations. arXiv preprint arXiv:1711.05696.
[10] Kevin Borgolte, Tobias Fiebig, Shuang Hao, Christopher Kruegel, and Giovanni

Vigna. 2018. Cloud strife: mitigating the security risks of domain-validated certifi-
cates. In proceedings of the Network and Distributed System Security Symposium.

[11] Andreas Borgwart, Spyros Boukoros, Haya Shulman, Carel van Rooyen, and
Michael Waidner. 2015. Detection and forensics of domains hijacking. In proceed-
ings of IEEE Global Communications Conference. 1–6.

[12] Matthew Bryant. 2016. Floating Domains – Taking Over 20K DigitalOcean
Domains via a Lax Domain Import System. https://thehackerblog.com/floating-
domains-taking-over-20k-digitalocean-domains-via-a-lax-domain-import-
system/.

[13] Matthew Bryant. 2016. The Orphaned Internet – Taking Over 120K Domains
via a DNS Vulnerability in AWS, Google Cloud, Rackspace and Digital Ocean.
https://thehackerblog.com/the-orphaned-internet-taking-over-120k-domains-
via-a-dns-vulnerability-in-aws-google-cloud-rackspace-and-digital-ocean/.

[14] Matthew Bryant. 2017. The .io Error – Taking Control of All .io Domains With a
Targeted Registration. https://thehackerblog.com/the-io-error-taking-control-
of-all-io-domains-with-a-targeted-registration/.

[15] Categorify. 2020. Website Categorify. https://categorify.org/.
[16] Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chandrasekaran, David

Choffnes, Dave Levin, Bruce M Maggs, Alan Mislove, and Christo Wilson. 2017.
A Longitudinal, End-to-End View of the DNSSEC Ecosystem. In proceedings of
the USENIX Security Symposium. 1307–1322.

[17] CloudDNS. 2020. Free DNS hosting, Premium DNS hosting and Domain names |
CloudDNS. https://www.cloudns.net/main/.

[18] Cloudflare. 2019. CloudFlare - Managed DNS. https://www.cloudflare.com/dns/.
[19] Contabo. 2020. Hosting solutions: Webspace, VPS, Dedicated Server. https:

//contabo.com/.
[20] David Dagon, Manos Antonakakis, Kevin Day, Xiapu Luo, Christopher P Lee, and

Wenke Lee. 2009. Recursive DNS Architectures and Vulnerability Implications..
In proceedings of the Network and Distributed System Security Symposium.

[21] David Dagon, Chris Lee, Wenke Lee, and Niels Provos. 2008. Corrupted DNS
resolution paths: The rise of a malicious resolution authority. In proceedings of
the Network and Distributed System Security Symposium.

[22] CERT Vulnerability Notes Database. 2014. Multiple DNS implementations vul-
nerable to cache poisoning. http://www.kb.cert.org/vuls/id/800113.

[23] Casey Deccio, Chao-Chih Chen, Prasant Mohapatra, Jeff Sedayao, and Krishna
Kant. 2009. Quality of name resolution in the domain name system. In proceedings
of the IEEE International Conference on Network Protocols. 113–122.

[24] Casey Deccio, Jeff Sedayao, Krishna Kant, and Prasant Mohapatra. 2010. Measur-
ing availability in the domain name system. In proceedings of the IEEE INFOCOM
Conference on Computer Communications. 1–5.

[25] John Dickinson, Sara Dickinson, Ted Lemon, and Tom Pusateri. 2019. DNS Stateful
Operations. RFC 8490. RFC Editor. https://tools.ietf .org/html/rfc8490

[26] DigitalOcean. 2019. DigitalOcean – The developer cloud. https://
www.digitalocean.com/.

[27] Dyn DNS. 2020. Managed DNS Hosting | Oracle Dyn. https://dyn.com/managed-
dns-hosting/.

[28] Public DNS. 2017. Public DNS Server List. https://public-dns.info/.
[29] Domain.com. 2020. Website Domains Names & Hosting | Domain.com. https:

//www.domain.com/.
[30] DNS Made Easy. 2019. DNS Made Easy | Fastest and Most Reliable Enterprise

DNS Provider. https://dnsmadeeasy.com/.
[31] Hurrican Electric. 2018. Hurricane Electric Hosted DNS. https://dns.he.net/.
[32] Robert Elz and Randy Bush. 1997. Clarifications to the DNS specification. RFC

2181. RFC Editor. https://tools.ietf .org/html/rfc2181
[33] Farsight. 2020. Farsight Security. https://www.farsightsecurity.com/.
[34] FreeDNS. 2019. FreeDNS - 1984 Hosting. https://www.1984hosting.com/product/

freedns/.
[35] GeoScaling. 2015. GeoScaling DNS2 - Free Managed DNS, redirect by Country,

City, Network Name. http://www.geoscaling.com/.
[36] GoDaddy. 2019. Domain Manager - GoDaddy. https://dcc.godaddy.com/domains/

dnsHosting/add.

[37] Cristian Hesselman, Giovane CM Moura, Ricardo de Oliveira Schmidt, and Cees
Toet. 2017. Increasing DNS security and stability through a control plane for top-
level domain operators. IEEE Communications Magazine 55, 1 (2017), 197–203.

[38] Hetzner. 2020. Dedicated Root Server, VPS &; Hosting - Hetzner Online GmbH.
https://www.hetzner.com/.

[39] SEO Hosting. 2015. Multiple DNS Hosting - SEO Web Hosting. http://
7cloudcomputing.com/.

[40] Shumon Huque, Paul Vixie, and Ralph Dolmans. 2020. Delegation Revalidation
by DNS Resolvers. draft-huque-dnsop-ns-revalidation-01. https://tools.ietf .org/
html/draft-huque-dnsop-ns-revalidation-01

[41] ICDSoft. 2020. What are the Most Popular TLDs/Domain Extensions in
2020? https://www.icdsoft.com/blog/what-are-the-most-popular-tlds-domain-
extensions/.

[42] Jian Jiang, Jinjin Liang, Kang Li, Jun Li, Haixin Duan, and Jianping Wu. 2012.
Ghost domain names: Revoked yet still resolvable. (2012).

[43] Jian Jiang, Jia Zhang, Haixin Duan, Kang Li, and Wu Liu. 2018. Analysis and
measurement of zone dependency in the domain name system. In proceedings of
IEEE International Conference on Communications. 1–7.

[44] Dan Kaminsky. 2008. Black ops 2008: It’s the end of the cache as we know it. In
Black Hat USA.

[45] Amit Klein. 2007. BIND 9 DNS cache poisoning. Report, Trusteer, Ltd.
[46] Amit Klein, Haya Shulman, and Michael Waidner. 2017. Internet-wide study

of DNS cache injections. In proceedings of the IEEE INFOCOM Conference on
Computer Communications. 1–9.

[47] ISC Knowledge. 2018. What is DNS Cache snooping? https://kb.isc.org/docs/aa-
00509/.

[48] John Kristoff. 2018. DNS inconsistency. https://blog.apnic.net/2018/08/29/dns-
inconsistency/.

[49] Marc Kührer, Thomas Hupperich, Jonas Bushart, Christian Rossow, and Thorsten
Holz. 2015. Going wild: Large-scale classification of open DNS resolvers. In
proceedings of the ACM SIGCOMM Internet Measurement Conference. 355–368.

[50] NLnet Labs. 2020. Unbound. https://nlnetlabs.nl/projects/unbound/about/.
[51] Baojun Liu, Chaoyi Lu, Haixin Duan, Ying Liu, Zhou Li, Shuang Hao, and Min

Yang. 2018. Who is answering my queries: Understanding and characterizing
interception of the DNS resolution path. In proceedings of the USENIX Security
Symposium. 1113–1128.

[52] Daiping Liu, Shuai Hao, and Haining Wang. 2016. All your DNS records point to
us: Understanding the security threats of dangling DNS records. In Proceedings
of the ACM SIGSAC Conference on Computer and Communications Security. 1414–
1425.

[53] Daiping Liu, Zhou Li, Kun Du, Haining Wang, Baojun Liu, and Haixin Duan.
2017. Don’t Let One Rotten Apple Spoil the Whole Barrel: Towards Automated
Detection of Shadowed Domains. In proceedings of the ACM SIGSAC Conference
on Computer and Communications Security. 537–552.

[54] Sean Lyngaas. 2020. Saudi cyber authority uncovers new data-wiping malware,
and experts suspect Iran is behind it. https://www.cyberscoop.com/saudi-arabia-
iran-cyberattack-soleimani/.

[55] MaraDNS. 2020. MaraDNS - a small open-source DNS server. https://
maradns.samiam.org.

[56] Microsoft. 2019. Microsoft DNS. https://docs.microsoft.com/en-us/windows-
server/networking/dns/dns-top.

[57] Paul Mockapetris. 1987. Domain Names - Concepts And Facilities. RFC 1034. RFC
Editor. https://tools.ietf .org/html/rfc1034

[58] Paul Mockapetris. 1987. Domain Names - Implementation And Specification. RFC
1035. RFC Editor. https://tools.ietf .org/html/rfc1035

[59] NS1. 2018. Managed & Private DNS That’s Smart, Efficient & Fast. https://
ns1.com/.

[60] CentOS Web Panel. 2018. CentOS Web Panel | Free Linux Web Hosting Control
Panel. http://centos-webpanel.com/.

[61] Vasileios Pappas, Zhiguo Xu, Songwu Lu, Daniel Massey, Andreas Terzis, and
Lixia Zhang. 2004. Impact of configuration errors on DNS robustness. In proceed-
ings of the ACM SIGCOMM conference on Applications, technologies, architectures,
and protocols for computer communications. 319–330.

[62] Paul Pearce, Ben Jones, Frank Li, Roya Ensafi, Nick Feamster, Nick Weaver, and
Vern Paxson. 2017. Global Measurement of DNS Manipulation. In proceedings of
the USENIX Security Symposium. 307–323.

[63] Roberto Perdisci, Manos Antonakakis, Xiapu Luo, and Wenke Lee. 2009. WSEC
DNS: Protecting recursive DNS resolvers from poisoning attacks. In proceedings
of the IEEE/IFIP International Conference on Dependable Systems and Networks.
3–12.

[64] PublicWWW. 2019. Source Code Search Engine - PublicWWW . https:
//publicwww.com/.

[65] Venugopalan Ramasubramanian and Emin Gün Sirer. 2005. Perils of transitive
trust in the domain name system. In proceedings of the ACM SIGCOMM Internet
Measurement Conference. 35–35.

[66] Marwa Rashad. 2020. Saudi Aramco sees increase in attempted cyber at-
tacks. https://www.reuters.com/article/us-saudi-aramco-security/saudi-aramco-
sees-increase-in-attempted-cyber-attacks-idUSKBN2002N2.

https://tools.ietf.org/html/rfc4786
https://www.alexa.com/topsites
https://aws.amazon.com/route53/
https://tools.ietf.org/html/rfc3833
https://thehackerblog.com/floating-domains-taking-over-20k-digitalocean-domains-via-a-lax-domain-import-system/
https://thehackerblog.com/floating-domains-taking-over-20k-digitalocean-domains-via-a-lax-domain-import-system/
https://thehackerblog.com/floating-domains-taking-over-20k-digitalocean-domains-via-a-lax-domain-import-system/
https://thehackerblog.com/the-orphaned-internet-taking-over-120k-domains-via-a-dns-vulnerability-in-aws-google-cloud-rackspace-and-digital-ocean/
https://thehackerblog.com/the-orphaned-internet-taking-over-120k-domains-via-a-dns-vulnerability-in-aws-google-cloud-rackspace-and-digital-ocean/
https://thehackerblog.com/the-io-error-taking-control-of-all-io-domains-with-a-targeted-registration/
https://thehackerblog.com/the-io-error-taking-control-of-all-io-domains-with-a-targeted-registration/
https://categorify.org/
https://www.cloudns.net/main/
https://www.cloudflare.com/dns/
https://contabo.com/
https://contabo.com/
http://www.kb.cert.org/vuls/id/800113
https://tools.ietf.org/html/rfc8490
https://www.digitalocean.com/
https://www.digitalocean.com/
https://dyn.com/managed-dns-hosting/
https://dyn.com/managed-dns-hosting/
https://public-dns.info/
https://www.domain.com/
https://www.domain.com/
https://dnsmadeeasy.com/
https://dns.he.net/
https://tools.ietf.org/html/rfc2181
https://www.farsightsecurity.com/
https://www.1984hosting.com/product/freedns/
https://www.1984hosting.com/product/freedns/
http://www.geoscaling.com/
https://dcc.godaddy.com/domains/dnsHosting/add
https://dcc.godaddy.com/domains/dnsHosting/add
https://www.hetzner.com/
http://7cloudcomputing.com/
http://7cloudcomputing.com/
https://tools.ietf.org/html/draft-huque-dnsop-ns-revalidation-01
https://tools.ietf.org/html/draft-huque-dnsop-ns-revalidation-01
https://www.icdsoft.com/blog/what-are-the-most-popular-tlds-domain-extensions/
https://www.icdsoft.com/blog/what-are-the-most-popular-tlds-domain-extensions/
https://kb.isc.org/docs/aa-00509/
https://kb.isc.org/docs/aa-00509/
 https://blog.apnic.net/2018/08/29/dns-inconsistency/
 https://blog.apnic.net/2018/08/29/dns-inconsistency/
https://nlnetlabs.nl/projects/unbound/about/
https://www.cyberscoop.com/saudi-arabia-iran-cyberattack-soleimani/
https://www.cyberscoop.com/saudi-arabia-iran-cyberattack-soleimani/
https://maradns.samiam.org
https://maradns.samiam.org
https://docs.microsoft.com/en-us/windows-server/networking/dns/dns-top
https://docs.microsoft.com/en-us/windows-server/networking/dns/dns-top
https://tools.ietf.org/html/rfc1034
https://tools.ietf.org/html/rfc1035
https://ns1.com/
https://ns1.com/
http://centos-webpanel.com/
https://publicwww.com/
https://publicwww.com/
https://www.reuters.com/article/us-saudi-aramco-security/saudi-aramco-sees-increase-in-attempted-cyber-attacks-idUSKBN2002N2
https://www.reuters.com/article/us-saudi-aramco-security/saudi-aramco-sees-increase-in-attempted-cyber-attacks-idUSKBN2002N2

[67] RU-Center. 2018. DNS Hosting - RU-CENTER. https://www.nic.ru/en/catalog/
for-domain-use/dns-hosting.

[68] Serverfault. 2018. What RFC encourages DNS servers to reply RE-
FUSED to queries for unknown domains? - Server Fault. https:
//serverfault.com/questions/892622/what-rfc-encourages-dns-servers-to-
reply-refused-to-queries-for-unknown-domains.

[69] Shashank Singh. 2019. 11 Best Free DNS Hosting Services. https://
technumero.com/free-dns-hosting-services/.

[70] Internet Society. 2013. DNSSEC Test Sites. https://www.internetsociety.org/
resources/deploy360/2013/dnssec-test-sites/.

[71] Raffaele Sommese, Giovane CM Moura, Mattijs Jonker, Roland van Rijswijk-
Deij, Alberto Dainotti, KC Claffy, and Anna Sperotto. 2020. When parents and
children disagree: Diving into DNS delegation inconsistency. In proceedings of the
International Conference on Passive and Active Network Measurement. 175–189.

[72] Sooel Son and Vitaly Shmatikov. 2010. The hitchhiker’s guide to DNS cache
poisoning. In proceedings of the International Conference on Security and Privacy
in Communication Systems. 466–483.

[73] StatDNS. 2020. TLD Zone File Statistics. https://www.statdns.com/. Online;
accessed 2 March 2020.

[74] stats.labs.apnic.net. 2018. Use of DNSSEC-ECDSA Validation for World (XA).
https://stats.labs.apnic.net/ecdsa/XA. Online; accessed 2 March 2020.

[75] Thomas Vissers, Timothy Barron, Tom Van Goethem, Wouter Joosen, and Nick
Nikiforakis. 2017. The wolf of name street: Hijacking domains through their
nameservers. In proceedings of the ACM SIGSAC Conference on Computer and
Communications Security.

[76] Paul Vixie. 1995. DNS and BIND Security Issues.. In proceedings of the USENIX
Security Symposium.

[77] Samuel Weiler and David Blacka. 2013. RFC 6840 - Clarifications and Implemen-
tation Notes for DNS Security (DNSSEC). https://tools.ietf .org/html/rfc6840.

[78] Wikipedia. 2020. Public recursive name server. https://en.wikipedia.org/wiki/
Public_recursive_name_server.

[79] Matan Ben Yosef, Haya Shulman, Michael Waidner, and Gal Beniamini. 2017. Fac-
toring DNSSEC: Evaluation of Vulnerabilities in Signed Domains. In proceedings
of the Symposium on Networked System Design and Implementation.

[80] Yingdi Yu, Duane Wessels, Matt Larson, and Lixia Zhang. 2012. Authority server
selection in DNS caching resolvers. proceedings of the ACM SIGCOMM Computer
Communication Review, 80–86.

[81] Zonemaster. 2020. Zonemaster. https://zonemaster.iis.se/.

https://www.nic.ru/en/catalog/for-domain-use/dns-hosting
https://www.nic.ru/en/catalog/for-domain-use/dns-hosting
https://serverfault.com/questions/892622/what-rfc-encourages-dns-servers-to-reply-refused-to-queries-for-unknown-domains
https://serverfault.com/questions/892622/what-rfc-encourages-dns-servers-to-reply-refused-to-queries-for-unknown-domains
https://serverfault.com/questions/892622/what-rfc-encourages-dns-servers-to-reply-refused-to-queries-for-unknown-domains
https://technumero.com/free-dns-hosting-services/
https://technumero.com/free-dns-hosting-services/
https://www.internetsociety.org/resources/deploy360/2013/dnssec-test-sites/
https://www.internetsociety.org/resources/deploy360/2013/dnssec-test-sites/
https://www.statdns.com/
https://stats.labs.apnic.net/ecdsa/XA
https://tools.ietf.org/html/rfc6840
https://en.wikipedia.org/wiki/Public_recursive_name_server
https://en.wikipedia.org/wiki/Public_recursive_name_server
https://zonemaster.iis.se/

A SUPPLEMENTARY TLDS

Domains Source # of unique domains

.edu domains 4,808

.gov domains 6,131
.edu.cn domains 3,336
.gov.cn domains 1,580
.edu.sa domains 1,453
.gov.sa domains 1,887

Total 19,195

Table 2: Distribution of domains under selected sponsored
TLDs analyzed in our study.

B EXPERIMENTAL RESULTS ON POPULAR
RESOLVERS AND DNS IMPLANTATION

Operator DNSSEC IP address Avg. successful
attempts Affected?

Google Yes 8.8.8.8 - No
Public DNS Yes 8.8.4.4 - No

CloudFlare Yes 1.1.1.1 3 Yes
Public DNS Yes 1.0.0.1 2 Yes

OpenDNS Yes 208.67.222.222 6.6 Yes
Yes 208.67.220.220 2.4 Yes
Yes 208.67.222.123 2.4 Yes
Yes 208.67.220.123 1.6 Yes

Quad9 Yes 9.9.9.9 3 Yes
Yes 149.112.112.112 4.8 Yes
No 9.9.9.10 3.2 Yes
No 149.112.112.10 3.2 Yes

OpenNIC Yes 185.121.177.177 14.4 Yes
Yes 169.239.202.202 6.2 Yes

Dyn DNS Yes 216.146.35.35 21 Yes
Yes 216.146.36.36 2.6 Yes

Comodo Yes 8.26.56.2 3.4 Yes
Secure DNS Yes 8.20.247.20 3.4 Yes

VeriSign Yes 64.6.64.6 - No
Public DNS Yes 64.6.65.6 - No

Neustar DNS Yes 156.154.70.1 2.4 Yes
Advantage Yes 156.154.71.1 2.2 Yes

Yes 156.154.70.2 2 Yes
Yes 156.154.71.2 1.4 Yes
Yes 156.154.70.3 3.2 Yes
Yes 156.154.71.3 3 Yes
Yes 156.154.70.4 2.2 Yes
Yes 156.154.71.4 1.8 Yes
Yes 156.154.70.5 1.8 Yes
Yes 156.154.71.5 1.6 Yes

Clean Yes 185.228.168.168 27.4 Yes
Browsing Yes 185.228.169.168 - No

Yes 185.228.168.10 1.2 Yes
Yes 185.228.169.11 1.2 Yes
Yes 185.228.168.9 23.6 Yes
Yes 185.228.169.9 1 Yes

AdGuard Yes 176.103.130.130 3.4 Yes
DNS Yes 176.103.130.131 3.4 Yes

Yes 176.103.130.132 1.4 Yes
Yes 176.103.130.134 1.4 Yes

Yandex.DNS No 77.88.8.1 - No
No 77.88.8.8 18 Yes
No 77.88.8.2 23 Yes
No 77.88.8.88 15.8 Yes
No 77.88.8.3 25 Yes
No 77.88.8.7 10.4 Yes

Avg(Average # of successful attempts) 6.5

Median(Average # of successful attempts) 3

Table 3: The result of our experiment on popular public DNS
resolvers, along with their DNSSEC support and the average
number of attempts to carry a successful attack against our
domain.

DNS Vendor Version Vul.? (Default) Vul.? (NS explic-
itly)

BIND 1.9.4 No Yes
Unbound 1.6.7 No ∗ Yes
Microsoft DNS Windows Server

2019
No Yes

PowerDNS Recursor 4.2.1 No Yes
MaraDNS Deadwood

3.5.0011
No No

DJB dnscache 1.05 No Yes

∗Vulnerable if "harden-referral-path" option is set
Table 4: The results of our experiment on popular DNS im-
plementations.

C MEASUREMENTS ON HIJACKABLE
DOMAINS

C.1 Hijackable Domains Characteristics

Uncat
egoriz

ed
Sport

s

Busin
ess

Fin
ancia

l

Educat
ion

al

Shopping
New

s

Tec
hnolo

gy

Engineer
ing

Videos

Clou
d/host

ing
0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f d
om

ai
ns

(a) Distribution of hijackable domains

among the top 11 categories.

AWS Route 53

GoDaddy

Domain.com
Contabo

Hetzn
er

CentOS Web Panel

RU Center

DNS Made Easy

DigitalOcean NS1

Hurric
ane Electri

c

ClouDNS
0

50

100

150

200

250

Nu
m

be
r o

f d
om

ai
ns

(b) Hijackable domains categorized by their

DNS hosting provider.

com gr org ir net ru co info
com.tr io

101

102

Nu
m

be
r o

f d
om

ai
ns

(c) Distribution of hijackable domains based
on the top 10 TLDs.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Probability

0

50

100

150

200

250

Nu
m

be
r o

f d
om

ai
ns

(d) Probability of Zref selection.

Figure 5: Hijackable domains analysis.

2020-01-01

2020-01-15

2020-02-01

2020-02-15

2020-03-01

2020-03-15

2020-04-01

Date

100

101

102

Nu
m

be
r o

f d
om

ai
ns

Figure 6: The duration in which hijackable domains remain
vulnerable.

C.2 Details on Attack Complexity

Operator Maximum TTL Consistency Rate Cache-miss Rate

Dyn DNS 604800 0 0

Comodo Secure DNS 604800 0 0

Neustar DNS Advantage 604800 0 0

CloudFlare Public DNS 604800 0.13% 0

AdGuard DNS 604800 0.79% 0

OpenDNS 604800 8.17% 0.06%

Quad9 43200 48.38% 99.93%

OpenNIC 604800 99.62% 100.00%

Clean Browsing 86400 99.73% 99.76%

Yandex DNS (77.88.8.8) 86400 100.00% 99.44%Yandex DNS (77.88.8.[2,3,7,88]) 10800

Table 5: The attack complexity on the vulnerable DNS re-
solvers.

MaximumTTL limit. Some resolvers set a limit on the maximum
TTL value they accept, which provides an estimate on how long a
poisoned A record can survive in the cache of the resolvers. Hence,
we measure the maximum TTLs of the affected resolvers. To this
end, we registered a domain and created 40 subdomains to test 40
affected resolvers (similar to our methodology in Section 4.3). The
TTL value for all subdomain’s A record is set to be 604800 seconds
(i.e., one week), the maximum TTL limit for most resolvers [42].
Then each resolver is queried to achieve the returned TTL value.

Table 5 shows the returned TTLs. As the resolvers from the same
operator share the same returned TTLs, except for Yandex DNS, we
present the value per operator.We observe themajority of the tested
resolvers accepts the set TTL value (i.e., 604800 seconds), while
resolvers operated by Clean Browsing and Quad9 accept smaller
TTL values, i.e., 86400 seconds and 43200 seconds, respectively. Note
that it is possible that a poisoned record was cleaned up from the

cache before its TTL expires. This is because resolvers may purge
cache periodically. In this measurement study, we are interested in
obtaining a high-level estimation about the lifetime of a poisoned
record.

	Abstract
	1 Introduction
	2 Background
	2.1 DNS Resolution and Caching
	2.2 DNS Hosting

	3 Zombie Awakening Attack
	4 Understanding Zaw Risks
	4.1 PVD and Provider Discovery
	4.2 Hijackable Domain Identification
	4.3 DNS Resolver Analysis
	4.4 Ethical Consideration

	5 Analysis and Measurement
	5.1 Characteristics of Hijackable Domains
	5.2 Measuring Attack Complexity
	5.3 Case studies

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Supplementary TLDs
	B Experimental Results on Popular Resolvers and DNS implantation
	C Measurements on hijackable domains
	C.1 Hijackable Domains Characteristics
	C.2 Details on Attack Complexity

